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I. INTRODUCTION

THERE is a growing consensus that state of the art finite
element technology requires, and will continue to require,

too extensive computational resources to provide the necessary
resolution for complex high-frequency electromagnetic simu-
lations. This leads us to consider methods with a higher order
of grid convergence than the classical second order provided
by most industrial grade codes.

Moreover, the direct application of the finite element
method (FEM) on these high-frequency problems leads to
very large, complex and possibly indefinite linear systems.
Unfortunately, direct sparse solvers do not scale well for
solving such large systems, and Krylov subspace iterative
solvers can exhibit slow convergence, or even diverge [1].
Domain decomposition methods (DDM) provide an elegant
alternative, iterating between subproblems of smaller sizes,
amenable to sparse direct solvers [2].

In this paper we investigate the use of high order Whitney
forms for the discretization of the subproblems as well as the
interface conditions between the subdomains, and experiment
with varying independently the discretization orders used in
the volume and on the interfaces.

II. PROBLEM DEFINITION

Let us start by considering the time-harmonic propagation
of an electrical wave e in an open waveguide Ω with metallic
boundaries Γ0. A source signal es is imposed on Γs. In order
to solve this problem with the FEM, the infinite domain is
truncated by a fictitious boundary Γ∞, on which a Silver-
Müller radiation condition is used. This leads to the following
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problem:
curl curl e− k2e = 0 on Ω,

γT (e) = 0 on Γ0,
γT (e) = es on Γs,

γT (e)− 

k
γt (curl e) = 0 on Γ∞,

(1)

where k is the wavenumber,  the imaginary unit, and the
tangential trace and tangential component trace operators are
given by γT (v) : v 7→ n × v × n and γt (v) : v 7→ n × v,
with n as the unit vector outwardly oriented normal to Ω.

III. NON-OVERLAPPING ADDITIVE SCHWARZ DOMAIN
DECOMPOSITION METHODS

Let us now review the construction of a non-overlapping
additive Schwarz domain decomposition method for the prop-
agation problem (1).

We start by splitting the domain Ω into non-overlapping
subdomains Ωi, with i ∈ {1, . . . , Ndom}. On a given subdo-
main Ωi, the interface with subdomain Ωj is denoted by Σij .
Conversely, on subdomain Ωj , the interface with subdomain
Ωj is written Σji. The electric filed on Ωi is denoted by ei.

It can be shown [2] that the solution e of (1), on the whole
domain Ω, can be computed by the following iterative scheme
(indexed by p):

curl curl epi − k2e
p
i = 0 on Ωi,

γT (epi ) = 0 on Γ0
i ,

γT (epi ) = es on Γs
i ,

γT (epi )− /k γt (curl epi ) = 0 on Γ∞i ,

S [γT (epi )]− /k γt (curl epi ) = gp−1
ij on Σij ,

(2)

with

gp
ij = −gp−1

ji + 2S
[
γT (epj )

]
on Σij . (3)

The quantity gp
ij represents the coupling of Ωi with Ωj , and the

operator S is a well chosen boundary transmission condition.
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A short presentation of optimized boundary conditions can be
found in [3].

It is worth noticing [3] that solving iteratively (2) and (3)
can be rewritten as the application of the iteration operator A:

gp = Agp−1 + b,

where gp is the concatenation of the gp
ij for 1 ≤ i, j ≤ Ndom,

and b contains the contribution of the source electric field.
Thus (2) and (3) can be solved using a Krylov solver applied
to:

(I −A)g = b, (4)

where I is the identity operator. The set of subproblems in (2)
can be solved independently and are of relatively small size,
since they are defined on small subdomains. This property
allows us to use (sparse) direct solvers.

IV. HIGH ORDER FINITE ELEMENT DISCRETIZATION

Classically, DDM implementations make use of the standard
Nédélec basis functions [4]. In this work, we propose to
analyse the behaviour of the DDM when higher order bases
are used, which are paramount to the accurate solution of
high-frequency propagation problems thanks to their improved
dispersion properties [5].

Using high order discretization may however lead to two
significant drawbacks: a significant increase in the assembly
time of the FEM matrix, and an increase in the iteration count
of the DDM. The former can be addressed by newly proposed
efficient and parallel high order assemblers [6]. The latter is
currently an open problem, for which preliminary numerical
tests are reported hereafter.

V. NUMERICAL EXPERIMENTS

For the numerical experiments, we consider the propagation
problem defined in (1). The test cases will consist in varying
the FEM discretization order of both equations (2) and (3).
A reference solution is provided by an order 4 FEM solution
computed without the DDM. The higher order Whitney forms
are those proposed in [7].

The DDM transmission condition S used is simply the
identity operator I, corresponding to a Silver-Müller condition
between the subdomains. Tests with other high order transmis-
sion conditions [8], [9] will be analyzed in the full paper.

Figure 1 summarizes the convergence rate of the GMRES
for different FEM discretization orders of (2) and (3). The
following notation is used to distinguish the possible orders:
{v, s}, where v is the order used for (2) and s the order for (3).

Two behaviours are observed. First, for the dotted lines,
the same FEM order was used. It can be directly seen that
the highest the discretization order is, the slower the GMRES
converges. This phenomenon might be explained by the dis-
cretization being able to represent faster parasitic oscillations.
On the other hand, using a lower discretization order for
the interface condition leads to a faster convergence of the
DDM. This could be explained by the damping of parasitic
oscillations through the fictitious DDM interfaces, introduced
by the projection of epi in (3) onto a smaller FEM subspace.

Table I summarizes the L2 errors between the DDM and the
FEM reference solution. Even for low order FEM discretization
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Fig. 1. Convergence rate of the GMRES for different discretization orders.

of (3), the L2 error stays in acceptable ranges. However,
the projection of epi onto a smaller subspace may introduce
numerical dissipation. This behaviour as well the overall hp
convergence of the method will be analysed in the full paper.

TABLE I
L2 ERROR WITH RESPECT TO AN ORDER 4 FEM REFERENCE SOLUTION.

Order L2 Error
Order {4, 1} 1.3424 10−3

Order {4, 2} 5.7793 10−5

Order {4, 3} 8.5603 10−7
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